Sous-espaces vectoriels engendrés par une partie d'un espace vectoriel ${\cal V}$

Définition 35 (span ou vect).

Soit V un espace vectoriel et v_1,\ldots,v_p des vecteurs de V. L'ensemble des combinaisons linéaires de v_1,\ldots,v_p s'appelle le span.

Théorème 29. Soient v_1, \ldots, v_p des éléments d'un espace vectoriel V. Alors $\operatorname{span}\{v_1, \ldots, v_p\}$ est un sous-espace vectoriel de V.

Preuve

Définition 36 (famille génératrice). On dira que $\{v_1, \ldots, v_p\}$ est une famille génératrice de span $\{v_1, \ldots, v_p\}$.

Exemple

4.2 Applications linéaires, noyaux et images

La notion d'application linéaire vue dans \mathbb{R}^n peut se généraliser aux applications $T: V \to W$ entre deux espaces vectoriels V et W.

Définition 37 (application linéaire).

Soient V et W deux espaces vectoriels et $T:V\to W$. On dit que T est une application linéaire si elle associe à tout élément v de V un unique élément T(v) de W et si T vérifie

1.

2.

Définition 38 (noyau d'une application linéaire).

Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Le noyau de l'application T est l'ensemble des solutions de

$$T(v) = 0_W$$
.

On le note

$$Ker(T) = \{ v \in V \mid T(v) = 0_w \}.$$

Exemple

Définition 39 (image d'une application linéaire). Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. L' image de l'application T est l'ensemble

$$\operatorname{Im}(T) = \{ b \in W \mid \exists \ x \in V \text{ avec } T(x) = b \}.$$

Théorème 30. Soient V et W deux espaces vectoriels et $T:V\to W$ une application linéaire. Alors

- 1. Ker(T) est un sous-espace vectoriel de V.
- 2. Im(T) est un sous-espace vectoriel de W.

Preuve

Cas particulier des matrices

On a vu que si $T: \mathbb{R}^n \to \mathbb{R}^m$ est linéaire, alors il existe une matrice $A \in M_{m \times n}(\mathbb{R})$ canoniquement associée à T, donnée par

$$A = (T(e_1) \dots T(e_n)).$$

Définition 40 (noyau d'une matrice).

Soit $A \in M_{m \times n}(\mathbb{R})$. Le noyau de la matrice A, noté $\operatorname{Ker}(A)$, est l'ensemble

$$\operatorname{Ker}(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \} \subset \mathbb{R}^n.$$

Théorème 31. Le noyau d'une matrice $A \in M_{m \times n}(\mathbb{R})$ est un sousespace vectoriel de \mathbb{R}^n .

Définition 41 (image d'une matrice).

Soit $A \in M_{m \times n}(\mathbb{R})$. L'image de A, notée Im(A), est l'ensemble engendré par les colonnes de la matrice A.

Théorème 32. Soit $A \in M_{m \times n}(\mathbb{R})$. Alors Im(A) est un sous-espace vectoriel de \mathbb{R}^m .

Preuve

4.3 Bases d'un espace vectoriel

On peut généraliser la notion d'indépendance linéaire et de span vue dans le cas particulier de \mathbb{R}^n pour définir les bases dans espace vectoriel quelconque.

Définition 42 ((in-)dépendance linéaire).

Soit V un espace vectoriel. Alors la famille (v_1, v_2, \ldots, v_p) d'éléments de V est dite linéairement indépendante si

$$\alpha_1 v_1 + \ldots + \alpha_p v_p = 0_V$$

n'admet que la solution triviale $\alpha_1 = \ldots = \alpha_p = 0$. Sinon, la famille (v_1, v_2, \ldots, v_p) est dite linéairement dépendante.

Remarque

Dans \mathbb{R}^n , si on a une famille (v_1, v_2, \ldots, v_p) , on peut échelonner la matrice dont les colonnes sont v_1, \ldots, v_p pour étudier l'indépendance linéaire. Pour d'autres espaces vectoriels, on n'a pas cette possibilité.

Théorème 33. Une famille (v_1, \ldots, v_p) , $p \geq 2$ est linéairement dépendante si et seulement si au moins un des éléments de la famille est combinaison linéaire des autres éléments.

Définition 43 (base).

Soit V un espace vectoriel. Soit $\mathcal{B}=(v_1,\ldots,v_p)$ un famille d'éléments de V. Alors \mathcal{B} est une base de V si

1.

2.

Théorème 34 (base extraite). Soient V un espace vectoriel et $S = (v_1, \ldots, v_p)$ une famille de p éléments de V. Soit $W = \text{span}\{v_1, \ldots, v_p\}$ le sousespace vectoriel de V engendré par S. Alors

- 1. Si un des éléments de S, par exemple v_k , s'écrit comme combinaison linéaire des v_i pour $i \neq k$, alors $\operatorname{span}\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_p\} = W$, autrement dit, la famille reste génératrice si on enlève v_k .
- 2. Si $W \neq \{0_V\}$, alors il existe une famille d'éléments extraits de S qui est une base de W.

Remarque

Bases de Ker(A) et Im(A)

Théorème 35. Soient $A \in M_{m \times n}(\mathbb{R})$ une matrice et B une forme échelonnée de A. Alors

- 1. Les colonnes pivots de B sont linéairement indépendantes.
- 2. Les colonnes pivots de A (qui correspondent aux colonnes pivots de B) sont linéairement indépendantes.
- 3. Les autres colonnes sont combinaisons linéaires des colonnes pivots.

Constat

Stratégie pour trouver une base de Im(A)

Suite de l'exemple

Remarque

Exemple : Recherche d'une base de $\operatorname{Ker}(A)$